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Abstract. Masked erosion of glass by powder blasting is studied and a nonlinear partial differential equation
of first order describing the displacement of the glass surface is proposed. This equation is solved by means of
the characteristic-strip equations. If so-called transition regions are introduced near the edges of the mask, an
analytical solution can be obtained which is in reasonable agreement with measurements.
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1. Introduction

The increase in size of modern television screens has driven a trend towards lightweight,
shallow displays to replace the current heavy, bulky cathode-ray-tube displays. Several basic
principles for display design have been studied or are still being researched; for an overview
see e.g. [1]. Some of these display principles require a vacuum enclosure for their operation;
see e.g. [2]. In order to make lightweight displays, internal structures are required to support
the vacuum envelope. Since these structures should not get in the way of the display func-
tion, they must be positioned very accurately. Furthermore, they should consist of dielectric
material that has the same thermal expansion coefficient as the transparent, vacuum-proof
front panel. Therefore, only structures of inorganic glass or ceramics are appropriate. In [2]
a display is studied which makes use of thin, patterned glass plates as supporting structure,
where electrons can travel through holes or trenches in the glass plates. These glass plates thus
have to be very accurately patterned with holes or trenches over large surfaces (up to 1 m2).

The high-accuracy patterning of glass plates at low cost is still an ongoing challenge. A
promising technique studied here for this purpose is the mechanical etching by solid particle
erosion, more commonly named powder- or sandblasting [3]. Patterned etching by sandblast-
ing has been used mainly for the decoration of glass and mirrors, where the scattering of
light at eroded parts of the surface contrasts attractively with the smooth unaffected parts of
the surface. Although the decorative application has been used for many years, it did not
need fundamental understanding. Furthermore, the erosion mechanism at the basis of the
process, namely solid-particle impact, has been studied scientifically as the undesirable phe-
nomenon damaging aircraft and rocket parts. Since this effort was primarily directed towards
preventing erosion, little was known about the implications of using solid-particle erosion as
a high-accuracy industrial etching process.

The physics of solid-particle erosion is presented in [4]. In particular, the erosion rate of
an uncovered glass plate blasted with an abrasive powder is studied. Conversely, in this paper
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we investigate the formation of patterns by erosion of surfaces that are locally protected with
an erosion-resistant mask. We present a first model for the evolution of a substrate surface
under the continuous impact of particles. The problem posed has some similarities with the
erosion of structures at far finer scales, using ion-sputtering; see e.g. [5–8]. In this field models
have been derived to describe the evolution of surfaces in 2D and 3D. The characteristics
of the solid-particle erosion process, however, differ in a number of ways from that of ion-
sputtering, posing specific problems and making the ion-sputtering experience of limited use
for the powder-blasting process.

We have organized our paper as follows. In Section 2 we give a brief outline of the physics
of powder erosion. In particular, we propose a model for the erosion rate E, based on measured
data. Subsequently, in Section 3, we present a mathematical model for the erosion of glass,
which consists of a hyperbolic partial differential equation for the surface position ζ or its
slope p. In Section 4 we formulate the corresponding characteristic-strip equations, which
that are solved in Section 5.

2. Physics of powder erosion

In powder erosion of brittle materials, sharp and abrasive particles in the powder cause de-
formations and micro-cracks in the target material. The formation of micro-cracks can be
described by the kinetic energy of the erosive particles [4]. Chipping of target material above
the cracks is the dominant erosion mechanism. The rate at which substrate material is removed
is determined by the erosion rate E, which is defined as the ratio of the mass loss of the
substrate and the mass of the erodent used.

There are several models for the erosion rate [4, 9–11]. In all these models, the erosion rate
depends on the particle impact velocity v. At normal impact, the erosion rate is proportional
to a power of the magnitude of the impact velocity, i.e.

E = C |v |k, (1)

where C > 0 is an empirical constant. Also, the exponent k is determined experimentally, and
its value varies between 2 and 4 [12]. This is in agreement with theoretical models that predict
the value k = 7/3; see e.g. [4, 9].

At oblique impact the erosion rate decreases. In this case, the erosion rate is roughly pro-
portional to the component of the impact velocity normal to the substrate [13–16]. This can
be observed from Figure 1, which shows the erosion rate of glass exposed to alumina (Al 2O3)

particles, as a function of the normal component of the impact velocity; see also [17, 18].
Therefore, we adopt the following model:

E = C
( |v | cos ϑ

)k
, (2)

where ϑ is the angle between the impact velocity vector v and the inward normal n to the
surface and C = C(ϑ). Note that for ϑ = 75◦, i.e., at glancing contact the factor C in (2) is
somewhat different from the value at smaller angles ϑ . As C is weakly dependent on ϑ , it is
henceforth assumed constant.

Figure 2 shows the formation of a pattern in a glass plate by masked erosion. The mask
considered has a circular hole and is exposed to a constant particle mass flux, i.e., the particle
flux and the impact velocity are constant. The photographs have been made by time-lapse
photography, exposing a picture at fixed time intervals. Some characteristics of the erosion
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Figure 1. The erosion rate of glass as a function of the normal component of the impact velocity. The figures in
the box give the angle between the impact velocity and the inward normal to the surface. (courtesy P.J. Slikkerveer,
Philips Research Laboratories, Eindhoven)

Figure 2. Pattern formation in glass by masked erosion. (courtesy P.J. Slikkerveer, Philips Research Laboratories,
Eindhoven)

process can be seen from these photographs. First, the hole is shallow close to the edge of the
mask and has a sharp tip in the middle. The reason for this is that, due to the finite particle
size, not all particles contribute to the erosion process close to the mask. On the other hand,
for a wide, shallow hole we would get a flat bottom in the centre. Secondly, with increasing
depth, the rate of growth of the hole decreases. This can be explained by the dependence of the
erosion rate on the angle of impact ϑ . Finally, with increasing depth, the hole takes an udder
shape. This is probably caused by rebounding particles from the steep slopes at the sides of
the pattern [7]. These particles are focused to the centre of the pattern, where they generate
additional erosion. We will not consider this so-called second-strike effect in this paper.

3. Mathematical model for powder erosion

In this section we introduce a mathematical model for the displacement of a surface due to ero-
sion by abrasive particles. Subsequently, we consider two special cases, viz. a two-dimensional
trench and a rotationally symmetric hole.

Consider an initially flat substrate of brittle material, covered with a mask. In Figure 3
we introduce an (x, y, z)-coordinate system, where the (x, y)-plane coincides with the initial
substrate and where the positive z-axis is directed into the material. A flux of particles with
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Figure 3. Cross section of a hole in the substrate.

velocity v in the positive z-direction hits the substrate and removes material. The position of
the surface at time t is described by the function z = ζ(x, y, t). We now derive a kinematic
condition for the surface. Let c denote the velocity of the surface in the direction of the unit
normal n on the surface, which is directed into the material and is given by

n = 1√
1 + ζ 2

x + ζ 2
y


 −ζx

−ζy
1


 . (3)

Consider a point P(x0, y0, z0) on the surface at time t0. During a small time interval δt this
point is displaced over a distance c δt in the direction of n to the point P ′(x0+δx, y0+δy, z0+
δz). It is clear that the dispacements δx, δy and δz are given by

δx = cδtn · ex = − cδtζx√
1 + ζ 2

x + ζ 2
y

,

δy = cδtn · ey = − cδtζy√
1 + ζ 2

x + ζ 2
y

,

δz = cδtn · ez = cδt√
1 + ζ 2

x + ζ 2
y

. (4)

On the other hand, we have

δz = ζ(x0 + δx, y0 + δy, t0 + δt) − ζ(x0, y0, t0)

= ζx(x0, y0, t0)δx + ζy(x0, y0, t0)δy + ζt (x0, y0, t0)δt + O(δt2).
(5)

Combining formulae (4) and (5) and taking the limit δt → 0, we obtain the following equation
for ζ :

ζt − c

√
1 + ζ 2

x + ζ 2
y = 0. (6)

Initial and boundary conditions for (6) will be specified later.
For c we adopt the model [17]

c = 1

ρs

E� · n = 1

ρs

E� cos ϑ, (7)
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where ρs is the mass density of the substrate, E the erosion rate, � = �ez the particle mass
flux in the direction of v and ϑ the angle between v and n. This means that only the particle
flux perpendicular to the surface contributes to the velocity c of the surface. Likewise, the
erosion rate E only depends on the normal component v · n of the particle velocity v = vez,
and is given by (2). Substitution of (7) and (2) in (6) gives

ζt − C

ρs

vk�
(
1 + ζ 2

x + ζ 2
y

)−k/2 = 0, (8)

where we have used that cos ϑ = 1/
√

1 + ζ 2
x + ζ 2

y .
Next, we make Equation (8) dimensionless. Introducing a characteristic length scale L, a

characteristic particle mass flux �̃ and the characteristic time T = Lρs/(C�̃vk), we obtain in
a straightforward way

ζt − �(x, y)
(
1 + ζ 2

x + ζ 2
y

)−k/2 = 0. (9)

The characteristic length L can be the width of a two-dimensional trench or the radius of
a rotationally symmetric hole. Note that T is the time needed to propagate the surface over
a distance L, when the particles hit the surface perpendicularly with mass flux �̃. In the
derivation of (9) we have assumed that v = Const, which implies that the dimensionless
particle mass flux �(x, y) = 1. However, in the next section we will show that this choice for
the particle mass flux does not give the correct solution of (9). A better model for the particle
mass flux �(x, y) will be specified in Section 4.

As a first special case we consider the growth of a two-dimensional trench. Let x denote
the transverse coordinate in the trench as indicated in Figure 3; then Equation (9) reduces to

ζt + �(x)f (ζx) = 0, 0 < x < 1, t > 0, (10)

where the function f = f (p) is defined by

f (p) = −(
1 + p2)−k/2

. (11)

Equation (10) is supplemented with the following initial and boundary conditions:

ζ(x, 0) = z0(x), 0 < x < 1, (12)

ζ(0, t) = ζ(1, t) = 0, t > 0. (13)

For the initial profile z0(x) we usually take z0(x) = 0; however, other choices are possible.
The boundary conditions in (13) mean that the trench cannot grow at the ends x = 0 and x =
1. In Section 4 we will see that, for a suitable choice of the particle mass flux �(x), boundary
conditions for ζ follow directly from the initial condition. For the special case z 0(x) = 0 we
obtain (13); in this situation these boundary conditions are in fact redundant.

An alternative formulation of the formation of a trench is in terms of the slope p = ζ x .
If we differentiate Equation (10) and initial condition (12) with respect to x, we obtain the
following initial-value problem for p:

pt + (
�(x)f (p)

)
x

= 0, 0 < x < 1, t > 0, (14)

p(x, 0) = z′
0(x), 0 < x < 1. (15)
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Note that we do not have boundary conditions for p; however, we do not need these, as will
become apparent in Section 4.

The second special case concerns the growth of a rotationally symmetric hole. Assume that
the hole in the substrate has a circular shape. It is convenient to express Equation (9) in polar
coordinates (r, φ), where the origin is located at the centre of the hole. Assuming rotational
symmetry, we can write Equation (9) as

ζt + �(r)f (ζr) = 0, 0 < r < 1, t > 0. (16)

Note that the particle mass flux now depends on r. Suitable initial and boundary conditions
are

ζ(r, 0) = z0(r), 0 < r < 1, (17)

ζ(1, t) = 0, t > 0. (18)

We have only one boundary condition at r = 1, stating that the hole does not grow at the edge.
Also in this case, the boundary condition (18) is possibly redundant when z 0(r) = 0.

Both the two-dimensional trench and the rotationally symmetric hole are used in patterned
glass plates. When the initial-boundary-value problems (10)–(13) and (16)–(18) are com-
pared, it is clear that the profiles ζ = ζ(x, t) for a two-dimensional trench and ζ = ζ(r, t) for a
cylindrically symmetric hole are alike. In the following, we only consider the two-dimensional
trench problem.

4. Characteristic-strip equations

In this section we present the characteristic-strip equations of the initial-value problems
(10)–(12) and (14)–(15). We assume that we have an initially flat substrate. Furthermore,
we specify the particle mass flux �.

Consider the following partial differential equations for the surface position ζ(x, t) and its
slope p(x, t) = ζx(x, t):

ζt − �(x)
(

1 + ζ 2
x

)−k/2 = 0,

pt − (
�(x)

(
1 + p2 )−k/2 )

x
= 0, 0 < x < 1, t > 0, (19)

together with the initial conditions

ζ(x, 0) = p(x, 0) = 0, 0 < x < 1. (20)

Introducing the variable q = ζ t , we can write the first partial differential equation in (19) in
the canonical form

F(x, t, ζ, p, q) := q − �(x)
(

1 + p2
)−k/2 = 0. (21)

The solution of the Cauchy problem for ζ , given by (21) and the corresponding initial condi-
tion in (20), can be constructed by solving the following initial-value problem [19]:
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dx

ds
= Fp = �(x)

kp

(1 + p2)k/2+1
, x(0; τ) = τ,

dt

ds
= Fq = 1, t (0; τ) = 0,

dζ

ds
= pFp + qFq = �(x)

1 + (k + 1)p2

(1 + p2)k/2+1
, ζ(0; τ) = 0,

dp

ds
= −(Fx + pFζ ) = �′(x)

1

(1 + p2)k/2
, p(0; τ) = 0,

dq

ds
= −(Ft + qFζ ) = 0, q(0; τ) = �(τ),

(22)

where s and τ are the parameters along the characteristics and the initial curve, respectively.
The equations in (22) are referred to as the characteristic-strip equations. The initial condition
for q follows from the partial differential equation (21) and the initial conditions for the other
variables. At the same time, the first, second and fourth differential equation plus correspond-
ing initial values determine the characteristics of the Cauchy problem for p, given by the
second partial differential equations in (19) and the corresponding initial condition in (20).
Note that the solution of the second and fifth equation is trivial, and we find

t (s; τ) = s,

q(s; τ) = �(τ).
(23)

The formal solution procedure for the other equations is as follows. We solve the first, third
and fourth equation and find x = x(t; τ), ζ = ζ(t; τ) and p = p(t; τ). Inverting the first
function we have τ = τ(x, t) and substitution of the latter expresssion gives the final solution
ζ(x, t) := ζ(t; τ(x, t)) and p(x, t) := p(t; τ(x, t)). In the following we use the notation
v(t; τ) or v(x; τ) for a generic variable v to indicate that an expression only holds along a
characteristic parametrized by t or x. The parameter τ denotes that the characteristic passes
through the point (τ, 0). On the other hand, we use the notation v(x, t) if an expression holds
in a part of the (x, t)-plane.

A first obvious choice for the dimensionless particle mass flux would be �(x) = 1. The
solution of the initial-value problem (22) in this case is trivial, and we find ζ(x, t) = t and
p(x, t) = 0, corresponding with a flat-bottom hole. This particular solution is in contrast
with experimental results that show slanted sides near the edges of the mask; see Figure 2. As
observed in Section 2, this is due to the finite particle size of the eroding powder which makes
that not all particles are effective in the erosion process close to the mask. In order to model
this phenomena, we introduce transition regions of thickness δ, where we assume that �(x)

increases continuously and monotonically from 0 at the boundaries to 1 at x = δ, 1 − δ. The
parameter δ is characteristic of the (dimensionless) particle size and a typical value is δ = 0·1.
We adopt the simplest possible choice for �(x), i.e.

�(x) =




x/δ if 0 ≤ x < δ,

1 if δ ≤ x ≤ 1 − δ,

(1 − x)/δ if 1 − δ < x ≤ 1.

(24)
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Figure 4. Characteristics and shocks of a two-dimensional trench, for δ =0·1 and k = 2.

As a result of (24), the growth rate of the surface position close to the mask is smaller than in
the middle of the hole. Since �(0) = �(1) = 0, we obtain from (22) the solutions x(t; 0) =
ζ(t; 0) = 0 and x(t; 1) = 1, ζ(t; 1) = 0, implying that the boundary conditions (13) for ζ are
automatically satisfied. Moreover, since �′(0) = 1/δ, we can compute p(t; 0) directly from
the fourth equation in (22); likewise we can compute p(t; 1). Thus, we are not allowed to
specify boundary conditions for p. However, the most important consequence of (24) is that
charcteristics originating from the transition regions are directed into the interior domain for
increasing t . This implies that the reduced particle mass flux in the transition regions will also
influence the solution in the interior domain, which is in agreement with experimental results.
Finally, we like to emphasize that (24) is merely a sensible guess for the particle mass flux
that still allows computation of the analytical solution of (22). Other choices are possible.

By introducing transition regions, we create intersecting characteristics. Therefore, the
solution of the partial differential equation for p in (19) can only be a weak solution [19]
and it is anticipated that shocks will emerge from the edges x = δ and x = 1 − δ. Let
x = ξ s,1(t) and x = ξ s,2(t) denote the location of the shocks at time t originating at x = δ

and x = 1 − δ, respectively. Each point (ξ s,i(t), t) (i = 1, 2) on these shocks is connected to
two different characteristics that exist on both sides of the shocks. The speed of these shocks
is given by the jump condition

dξs,i
dt

[p] = −[�(x)(1 + p2)−k/2], (i = 1, 2), (25)

where [v] denotes the jump of a generic variable v across the shock. The derivation of (25)
is based on the integral formulation of Equation (14) and is a standard result in the theory of
first-order quasilinear partial differential equations; see e.g. [19]. Alternatively, in Appendix A
we present a slightly different derivation, which is based on Equation (10). Thus, we can
distinguish the following five regions in the (x, t)-plane: the left transition region 0 ≤ x ≤ δ
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(region 1), the right transition region 1 − δ ≤ x ≤ 1 (region 2), the interior domain left of
the first shock (region 3), the interior domain right of the second shock (region 4) and the
region between the two shocks (region 5); see Figure 4. Region 3 is the range of influence
of the points in the left transition region, and likewise, region 4 is the range of influence of
the points in the right transition region. In the following we will solve the system (22) in
these five regions. Note, that the location of the shocks depends on the solution through the
Equations (25) and has to be computed as well.

5. Analytical solution

The exact solution of the initial-value problem (22) is computed in this section. The special
case k = 2 is discussed in [20].

First, consider region 1. If we choose x as the parameter along the characteristics instead of
t , we can derive from (22) the following differential equations for the slope p and the surface
position ζ ,

dp

dx
= 1

x

1 + p2

kp
,

dζ

dx
= 1 + (k + 1)p2

kp
.

(26)

Taking into account the initial conditions x(0; τ) = τ and p(0; τ) = 0 in (22), we can solve
the first equation and find

p(x; τ) =
√(x

τ

)2/k − 1. (27)

Combining both differential equations in (26), we obtain the following simple equation for ζ

dζ

dx
= p + 1 + p2

kp
= p + x

dp

dx
, (28)

and together with the initial conditions ζ(0; τ) = p(0; τ) = 0 in (22) it has the solution

ζ(x; τ) = xp(x; τ). (29)

The solutions in (27) and (29) give p and ζ along the characteristic through the point (τ, 0)
on the initial curve. The location of this characteristic follows from the differential equation

dx

dt
= kτ

δ

√(
x/τ

)2/k − 1(
x/τ

)2/k , (30)

which follows readily after substitution of (27) in the differential equation for x in (22).
Integrating (30) subject to the initial condition x(0; τ) = τ and choosing p as the independent
variable, we arrive at the relation

t

δ
= T (p) :=

∫ p

0

(
1 + r2)k/2

dr. (31)

The integral in (31) can be expressed in terms of a hypergeometric function 2F1
(
a, b; c; z),

resulting in the following alternative expression for t/δ [21, pp. 558]:
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t

δ
= p

(
1 + p2 )k/2

2F1
( − k/2, 1; 3/2; sin2 ϑ

)
, sin ϑ = p√

1 + p2
, (32)

where ϑ is the angle between the impact velocity v and the inward normal n; see Figure 3.
Alternatively, formulae (31) and (32) can be obtained by direct integration of the differential
equation for p in (22). Points (x, t) on the characteristic through (τ, 0) are thus determined
by (27) and (31). Note that the slope p in region 1 is a function of t/δ only and is independent
of the space coordinate x. When computing the solution in region 1 at a given time level t , we
first solve Equation (31) for p and subsequently compute ζ from (29).

From (27), (29) and (31), we see that the characteristic through (τ, 0) (0 < τ < δ) reaches
the edge x = δ at time t1(τ ), with slope p1(τ ) and surface position ζ1(τ ) given by

p1(τ ) :=
√(

δ

τ

)2/k

− 1,

ζ1(τ ) := δ p1(τ ),

t1(τ ) := δ T (p1(τ )),

(33)

with T (p) defined in (31). These are the ‘initial’ conditions for the solution of initial-value
problem (22) in region 3.

Now, consider region 3. Since �′(x) = 0 in region 3, the slope p is constant along
characteristics and, consequently, the differential equations in (22) can be easily solved. We
find

p(x; τ) = p1(τ ),

ζ(x; τ) = ζ1(τ ) + 1 + (k + 1)p2
1(τ )

kp1(τ )
(x − δ),

t (x; τ) = t1(τ ) +
(

1 + p2
1(τ )

)k/2+1

kp1(τ )
(x − δ),

(34)

with p1(τ ), ζ1(τ ) and t1(τ ) defined in (33). The characteristics in this region are straight lines
and are displayed in Figure 4. To compute the solution at a given point (x, t), we first have to
solve the third equation in (34) for p1(τ ) and subsequently compute p(x, t) and ζ(x, t) from
the other two equations.

The solution of (22) in region 5 is trivial, and is given by

x(t; τ) = τ, p(x, t) = 0, ζ(x, t) = t; (35)

see Figure 4. The characteristics are now vertical lines through (τ, 0), corresponding to a flat
surface.

Since the particle mass flux (24) is symmetric around x = 0·5, it is also clear that the
solution of the initial-value problem (22) is symmetric around x = 0·5. Consequently, the
solution in regions 2 and 4 can be easily obtained from the corresponding solutions in region 1
and 3, respectively. However, for the sake of brevity, we omit the explicit formulae.

Finally, we have to determine the location of the shocks. We only consider the first shock,
emanating from the edge x = δ. The computation of the second shock is completely analo-
gous. The evolution of the first shock is determined by the jump condition (25), which in this
case leads to the initial-value problem
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dξs,1
dt

= 1

ps,1

(
1 − (

1 + p2
s,1

)−k/2
)
, ξs,1(0) = δ, (36)

with ps,1 = p1(τ ) being the value of the slope just left of the shock on the characteristic
through (δ, t 1(τ )). Thus, the following relation holds between ps,1 and ξs,1:

ξs,1 − δ

t − t1(τ )
= kps,1(

1 + p2
s,1

)k/2+1 . (37)

Combining relation (37) with the formulae for t 1(τ ) given in (33) and (31), differentiating the
resulting equation with respect to t and substituting (36), we find the following initial-value
problem for p s,1:

dps,1

dt
= p2

s,1(
1 + p2

s,1

)k/2

(
k − (

1 + p2
s,1

)(
1+p2

s,1

)k/2−1

p2
s,1

)
/
(

1 − p2
s,1

)
δ − (k+1)p2

s,1−1

p2
s,1−1

ξs,1

, ps,1(0) = 0. (38)

The initial value for ps,1 follows, e.g. from Equation (31). Note that the right-hand sides of
(36) and (38) are not defined for t = 0, and can only be computed using Taylor-series expan-
sions for ξ s,1(t) and ps,1(t). The propagation of the shock is determined by the differential
equations (36) and (38), which we have to solve numerically. The result is shown in Figure 4.

We have collected the results of this section in Figure 5, which gives the analytical solutions
for ζ and p at time levels t = 0·0, 0·1, · · · , 1·0 for δ = 0·1 and k = 2, 2·33, 3, 4. Figure 5
nicely displays the features of the solution: a slanted surface in the transition regions, a flat
bottom in the interior domain and a curved surface in between. Also, the inwardly propagating
shocks are clearly visible. Moreover, for increasing k, the slopes decrease, resulting in more
shallow holes.

To validate our model, we compare in Figure 6 the analytical solution with experimental
results at four different time levels, for the erosion of a trench. All surfaces are dimensionless
according to the scaling in Section 3. We have computed the surfaces with k = 7/3 and
δ = 0·1. We see a good qualitative agreement between analytical and experimental results.
Both show the shallow, flat-bottom solution in the middle of the hole at t = 0·5. However,
the analytically computed hole at t = 0·5 is somewhat deeper than the experimental one.
The reason for this is probably the shadow effect of the mask, which is not included in the
analytical model. For t ≥ 1·6, the experimental surfaces show an udder shape in the middle
of the hole, which is probably caused by rebounding particles from the slopes at the sides
of the surface. This so-called second-strike effect is also not included in our model. Further
differences are the round top of the experimental holes, due to the finite particle size and the
widening of the experimental holes due to mask wear.

6. Conclusion

Modern flat-screen televisions are equipped with a large glass plate with holes or trenches in
it, to direct electrons to the proper spot on the screen. One method to manufacture such glass
plates is to cover it with an erosion-resistant mask and blast it with an abrasive powder. In
this paper we proposed a mathematical model for the formation of holes in a glass plate by
powder-blasting. In particular, we derived a nonlinear partial differential equation of first order
for the surface position ζ of a hole. We have computed an analytical solution for this equation
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Figure 5. Analytical solution for the surface position (left) and its slope (right) of a two-dimensional trench.
Parameter values are δ = 0·1 and (from top to bottom) k = 2, 2·33, 3 and 4.
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Figure 6. Analytical solution (left) and measurements (right) of the surface position for a two-dimensional trench
at t = 0·5, 1·1, 1·6 and 2·1. ( Experimental results by P.J. Slikkerveer [20])

from the corresponding characteristic-strip equations and compared it with measurements.
The analytical solution predicts a shallow hole with a slanted surface near the edges of the
mask, connected with a deep, flat bottom in the middle of the hole. This is also observed in
experiments. A discrepancy between the analytical solution and the experimental results is
the formation of an udder-shaped surface in the middle of a hole. This is probably caused by
rebounding particles and has not been taken into account in our model.

Topics for further research are, in our opinion, the modelling of rebounding particles, the
so-called second-strike effect, and the application of level-set methods to this problem.

Appendix A, derivation of the jump condition

Equation (10) for the surface position ζ(x, t) can be written in the form

q + �(x)f (p) = 0, 0 < x < 1, t > 0, (A.1)

with p := ζx and q := ζt . This equation is a kinematic condition describing the displacement
of the surface z = ζ(x, t) due to a normal velocity cn; see Section 3. From Equation (A.1) we
easily see that the relation

q(x2, t) − q(x1, t) + �(x2)f (p(x2, t)) − �(x1)f (p(x1, t)) = 0 (A.2)

should hold for arbitrary x1, x2 ∈ (0, 1), t > 0. We take x1 < x2. Assume that p and q, but not
ζ , are discontinuous across a curve %s : x = ξs(t) in the domain D : x1 ≤ x ≤ x2, t ≥ 0. The
curve %s divides D into two subdomains, viz. D1 : x1 ≤ x < ξs(t) and D2 : ξs(t) < x ≤ x2,
where we assume that ζ, p and q are continuously differentiable. We refer to %s as a shock.
Taking the limits x1 ↑ ξs(t) and x2 ↓ ξs(t), we obtain from (A.2)

[q] + [
�(x)f (p)

] = 0, (A.3)

with [q] := q(ξs(t)+, t) − q(ξs(t)−, t) the jump in q across %s ; likewise
[
�(x)f (p)

]
is the

jump in �(x)f (p) across %s .
The difference q(x2, t) − q(x1, t) in relation (A.2) can be split in three parts as follows:
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q(x2, t) − q(x1, t) = (
q(ξs(t)−, t) − q(x1, t)

) + (
q(x2, t) − q(ξs(t)+, t)

)
+ (

q(ξs(t)+, t) − q(ξs(t)−, t)
) (A.4a)

=
∫ ξs (t)

x1

pt(x, t) dx +
∫ x2

ξs (t)

pt (x, t) dx + [q]. (A.4b)

The first and second term on the right-hand side of (A.4a) are the increments of q(x, t) in D 1

and D 2, respectively, and they can be expressed by the integrals in (A.4b). The last term on
the right-hand side of (A.4a) is just the jump of q across %s . The integrals in (A.4b) satisfy the
relations∫ ξs (t)

x1

pt(x, t) dx = I ′
1(t) − p(ξs(t)−, t)ξ ′

s(t), (A.5a)

∫ x2

ξs(t)

pt (x, t) dx = I ′
2(t) + p(ξs(t)+, t)ξ ′

s(t), (A.5b)

where the integrals I1(t) and I2(t) are defined by

I1(t) :=
∫ ξs (t)

x1

p(x, t) dx = ζ(ξs(t), t) − ζ(x1, t), (A.6a)

I2(t) :=
∫ x2

ξs(t)

p(x, t) dx = ζ(x2, t) − ζ(ξs(t), t). (A.6b)

Inserting relations (A.5) into (A.4b), we obtain

q(x2, t) − q(x1, t) = I ′
1(t) + I ′

2(t) + [p] ξ ′
s(t) + [q]. (A.7)

Taking into account that ζ(x, t) is continuous at x = ξ s(t), we see that I ′
1(t) + I ′

2(t) =
q(x2, t) − q(x1, t) and consequently relation (A.7) reduces to

[p] ξ ′
s(t) + [q] = 0. (A.8)

Combining (A.3) and (A.4b) we obtain the jump condition

[p] ξ ′
s(t) = [

�(x)f (p)
]
. (A.9)

Finally, substituting expression (11) for the function f (p), we recover the jump condition
(25).
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